

DESIGNING AND LIVING IN A MEDITERRANEAN ACTIVE HOUSE:

FIRST ASSESSMENT ON CLIMATE AND USERS IMPACT ON ENERGY AND INDOOR COMFORT

Webinar 24 September 2014

Guest speaker: Ing Arianna Brambilla, Department A.B.C., Politecnico di Milano

Welcome –Practical information

Please *mute* your telephone.

- Use the chat to ask questions.
- The host will read them and moderate the Q&A session

Active House Vision

- buildings that gives more than they take

Active House is a vision of buildings that create healthier and more comfortable lives for their occupants without impacting negatively on the climate

Comfort

creates a healthier and more comfortable life
 An Active House creates healthier and more comfortable indoor conditions for the occupants, ensuring a generous supply of daylight and fresh air. Materials used have a neutral impact on comfort and indoor climate.

Energy

contributes positively to the energy balance of the building
 An Active House is energy efficient. All energy needed is supplied by renewable energy sources integrated in the building or from the nearby collective energy system and electricity grid.

Environment

 has a positive impact on the environment
 An Active House interacts positively with the environment through an optimised relationship with the local context, focused use of resources, and its overall environmental impact throughout its life cycle.

26.09.2014 #3

Agenda

Objective of the webinar:

A Mediterranean Active House is taken as an example for testing the robustness of the solution in three different Italian cities: Palermo, Rome and Milan, from a very hot climate to a more continental one. Moreover every project must be evaluated taking into considerations the climatic, social, economic and cultural aspects, and it must be able to guarantee the optimal performance in every way it could be "used" by the occupant. The aim is to understand the resilience that an Active House could provide according to different users scenarios both from an energy point of view and the indoor comfort.

Program of the webinar:

- Introduction to the webinar: 10 min
- Presentation by Ing Arianna Brambilla (Department A.B.C., Politecnico di Milano):
 25 min
- Questions and answers: 25 min

26-09-2014 #4

practical GUIDELINES

for designing and living an Active House in warm climate

SENSITIVITY ANALYSIS

Effectivness on energy consumption of the buildings design parameters

-U : insulation walls

-Uw: insulation windows

-Dw: orientation windows -Mass: constructions mass

-Vr : ventilation ratio

-Nhr : heat recovery efficiency

ENVELOPE ANALYSIS

Influence of the constructions method on energy consumption

WINDOWS ORIENTATION ANALYSIS

Influence of the orientation of the windows on indoor comfort

STATIC COMFORT METHOD: evaluation of temperatures

ADAPTIVE COMFORT METHOD: evaluation of AH classes

BUILDING AUTOMATION SYSTEM ANALYSIS Influence of domotics on indoor comfort

	BASE	MIDDLE	DOMOS	DOMOS+	
VENTILATIO N	none	none	MOVABLE If Tin>Text and Text>22°C 1 vol/h	MOVABLE If Tin>Text and Text>22°C 5 vol/h	
INFILTRATIO N	0,3 vol/h	0,6 vol/h	0,3 vol/h	0,3 vol/h	
SHADDING	none	FIXED 60% south 30% west	MOVABLE If Tin>Text : Text>24°C and Ir>140 W/mq 70%	MOVABLE If Tin>Text : Text>24°C and Ir>140 W/mq 80%	

ADAPTIVE COMFORT METHOD: evaluation of Active House hourly Class

MEDITERRANEAN ACTIVE HOUSE MODEL

naturale in ambienti non illuminati

CANTINA non climatizzata SOUTH FACADE

INVERTED: North and East facades open South and West facade closed

Use of cold light

Ventilation stack and cross natural ventilation

Low surface/volume ratio: low thermal waste thorugh facades

Roof: not piched but shaded

Wall: light construction with medium U values

Floor / Roof: massive construction

Windows domotic system

	FAMILY			
	1	2	3	4
00.00 / 08.00	IN	IN	IN	IN
08.00 / 12.00		IN		
12.00 / 13.00	IN	IN		
13.00 / 15.00		IN		
15.00 / 18.00			IN	
18.00 / 24.00	IN	IN	IN	IN

		SYSTEM		
ACTIONS	shadding	ventilation		
	Α	V	V	
thief-proof	В	V	X	
	С	X	X	
preventing noise	D	V	X	
	Е	X	X	
oir fooling	F	V	V	
air feeling	G	X	V	

USERS MISUSE ANALYSIS

Influence of users different use of space and domotic systems

CASE STUDY

VELUXIab

CENED: A+

First NZEB in a University Campus

First ActiveHouse certified as built

VELUXIab: COMFORT

Enhancing passive strategies

Dynamic simulation as decision tools

Thermal shield

Use of natural ventilation to cool

Integration of high performance system

Exposition and sun analysis to prevent overheating

Light analysis for roof-windows placement

Use of acoustic high performant roof (insulation and finishing)

Use of air-cleaning materials (zeolite panels for polluta

VELUXIab: ENVIRONMENT

Reducing the impact on the environment

Re-use of the old structure

Use of natural or recyclable new materials

Attention the production process

Re-use of process waste

VELUXIab: ENERGY

Use of the sun

VELUXIab:THE RADAR

Comparison between the old Atika and the new building

VELUXIab:THE RADAR

The certification with the new tool

VELUXIab: ONGOING RESEARCH Energy consumption due to users interaction

Innovative wireless monitoring system

Innovative sensors

Real time streaming on online platform

Agumented reality for virtual visualization

Real performance detected

Questions and Answers

26-09-2014 #23

Thank you!

Technical University of Denmark

ROCKWOOL

PROVIDENCE

BULLER CENTRE

AALBORG UNIVERSITY

